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Abstract
Radio-frequency sensors are often introduced as privacy-
preserving alternatives to cameras, as they enable similar use
cases without relying on visual data. However, researchers
argue that radio-frequency sensors cause privacy risks simi-
lar to cameras and even introduce additional risks. We con-
ducted in-depth interviews (N = 14) and a large-scale vi-
gnette survey (N = 510) to understand people’s perceptions
and privacy concerns around radio-frequency sensing. Most
interviewees were initially unaware of the full capabilities
of radio-frequency sensing but expressed nuanced concerns
upon learning more. Our survey revealed that, while people
expressed concerns, they mostly preferred radio-frequency
sensors over cameras in private locations. However, they pre-
ferred cameras when considering radio-frequency sensing
from a neighbor’s perspective and in security-relevant situa-
tions. Protective measures can reduce concerns, but the best
protection depends on the context. Our findings can inform ed-
ucational and legislative efforts to ensure a privacy-preserving
future with radio-frequency technology.

1 Introduction

Radio-frequency (RF) sensing systems interpret RF waves,
such as Wi-Fi or millimeter waves, to understand their environ-
ment. These systems are emerging as significant alternatives
to many traditional single-purpose sensors, such as motion
detectors, thermal sensors, and especially cameras, which are
widely deployed in smart homes. Unlike traditional sensors
(typically task-specific products), RF sensors can replicate
many of these functions at a lower cost, often leveraging
existing on-device communications hardware. While many
commercially available smart home products still rely on cam-
eras, RF sensors are being deployed rapidly, for example, in
smart sleep monitors [66] or home security systems [51]. This
is because many features that require cameras can be more
efficiently realized with RF sensors, such as motion detec-
tion [33, 43], fall detection [54, 72], and even identifying

people [63, 82] and recognizing emotions [85]. RF sensors
offer other advantages over cameras: they are not sensitive to
lighting and their functionality is unhindered by most physical
objects (e.g., walls) [1, 3]. Moreover, as RF sensors do not
rely on visual data, RF researchers frequently market them as
privacy-preserving relative to alternatives [28, 32, 64]. How-
ever, declaring RF sensing privacy-preserving might be mis-
leading, as much of the same information that cameras can
infer can also be derived from RF sensors (and sometimes
even more).

Indeed, with non-RF sensors, research has found that users
have many privacy concerns, influenced by contextual fac-
tors [22, 37]. Hence, similar but unique frameworks might
govern RF sensing perceptions. If so, regulation might be
needed to limit excessive user harm. As the privacy-invasive
nature of cameras has been well recognized, regulations in
many jurisdictions mandate that people are informed of video
monitoring. No such regulations currently exist for RF sens-
ing, even though research documents the privacy risks it intro-
duces [42, 47, 68]. In contrast to sensor-specific data, such as
images captured by cameras or heart rate data from biometric
sensors, the data generated by RF sensors typically contains
multiple sensitive data types simultaneously, such as motion,
identity, and even emotional states, making it even more con-
cerning when leaked [68, 87]. In response, prior work devel-
oped technological defenses, for example, by using perturba-
tions, filtering, and obfuscation techniques [42, 44, 62].

Although researchers have recognized the privacy risks in-
troduced by RF sensing and developed technological defenses,
no research has directly investigated people’s perceptions of
RF technology or defenses against it. Thus, it remains unclear
whether users perceive RF sensing as more privacy-preserving
when fully informed of its capabilities. We address this gap
through the following research questions:

RQ1 How do people perceive the capabilities and privacy
risks of RF sensing, and do they differ from cameras?

RQ2 How much do contextual factors affect comfort with
RF sensors and preferences for RF sensors vs. cameras?
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RQ3 How much do protective measures affect comfort with
RF sensors and preferences for RF sensors vs. cameras?

We answer these questions through a two-part study. First,
we conducted in-depth interviews (N = 14) to gauge people’s
knowledge of RF sensing and their reactions to the capabilities
and privacy risks in various scenarios. Digging deeper, we ran
a large-scale online vignette survey (N = 510) to find how
much contextual factors influence comfort and preferences.

In our interviews, almost no participant initially knew about
RF sensing. However, they expressed nuanced privacy con-
cerns after we explained the technology, suggesting that RF
sensing is not a privacy panacea. Moreover, introducing con-
crete RF sensing use cases to participants revealed contextual
factors that influenced concerns. We varied these factors in our
online vignette survey to measure their precise impact on com-
fort. We found that, even though participants expressed con-
cerns, they still preferred RF sensors over cameras in private
locations. Yet, outside their homes, especially for security-
relevant use cases and when RF technology was deployed by
neighbors, most people preferred cameras. We further found
that most protective measures improve RF sensing comfort
but are dependent on use case and perspective.

To the best of our knowledge, this paper is the first to con-
duct an in-depth investigation of people’s perceptions of RF
sensing, quantifying the extent to which contextual factors
impact privacy concerns. In addition, this paper identifies the
leading protective measures and their applicability in different
contexts. We close by discussing how our findings can impact
education and public policy. As such, our paper contributes
to a privacy-preserving future with radio-frequency sensing.

2 Related Work

RF sensors create distinct privacy challenges, separating them
from other sensors such as cameras and microphones. While
cameras require line-of-sight and light, RF sensors are able
to sense through physical barriers, regardless of light. This
uniquely positions RF sensing in the privacy and surveillance
discourse. Table 1 summarizes these distinctions, comparing
the capabilities of IoT sensors commonly used in scenarios
relevant to our study: security, health, and crowd analytics.

Below, we present research on RF sensing capabilities and
risks, summarize attacks and countermeasures, and discuss
users’ privacy concerns related to sensing technologies.

2.1 RF Sensing Capabilities
RF sensing systems emit signals in all directions. When these
signals encounter physical objects or people, they are scattered
and reflected back to the sensor, depending on the properties
of the object, such as its material and movement [41, 76].
By analyzing these reflected signals, the RF sensor can in-
fer rich information, such as emotions [85], biometrics [19],

and activities [60], which in turn enables numerous functions.
Moreover, RF sensors can operate through nonmetallic solid
objects and walls [1, 7, 15, 88], and, unlike typical visible-
light cameras, they are not sensitive to lighting conditions.
Like cameras, RF sensors can function in both spacious public
areas and more private settings [83]. While RF sensing sys-
tems introduce privacy risks, many researchers still describe
them as privacy-preserving alternatives, highlighting that they
do not capture visual data [2, 27, 28, 53, 64]. In this paper, we
investigate whether people actually do perceive RF sensing
to be privacy-preserving.

RF sensing enables a variety of advanced surveillance ca-
pabilities. RF sensors are, for example, capable of tracking
(multiple) people [2, 15, 64]. For instance, Adib and Katabi
[1] identified the number of people in a room, their location,
and gestures. Similarly, Pu et al. [56] were able to recognize
nine different gestures anywhere in a house, and Tan and Yang
[67] detected subtle finger movements. Such fine-grained de-
tection also enables keystroke recognition [4]. Research has
shown that, by extracting biometric data (body size and shape),
it is possible to identify individuals [27]. Additionally, Oz-
turk et al. [52] developed a method to record sound with RF
sensors, even through soundproof barriers. Collectively, these
allow RF sensing systems to find applications in security-
relevant use cases, for example, detecting intruders [13].

RF sensing also has many applications in healthcare. Wang
et al. [72], for example, identified daily activities such as walk-
ing and sitting, as well as abnormal activities, such as falling.
Shah and Fioranelli [61] used RF sensing to monitor heart
rate, chest movement, body structure and orientation, sleep
patterns, and breathing. Hsu et al. [34] developed a sleep
monitoring system to monitor breathing, bed location, and
bed entries/exits, and classify sleep and awake periods. These
systems can also work for multiple users at a time and operate
at long distances. Yue et al. [80], for example, developed a
breathing monitor that accurately distinguished people shar-
ing a bed. Similarly, researchers developed breathing [81]
and heart rate monitors [3] that work for multiple people. RF
sensors can also identify emotions by recognizing variations
in heartbeats [85] or via gesture and pose recognition [58].
RF data might even detect Parkinson’s disease [77]. Our study
is informed by the range of demonstrated capabilities of this
technology, with use cases reflecting both current realities and
near-future possibilities.

2.2 RF Sensing Technological Defenses

In response to privacy risks, researchers developed techno-
logical countermeasures such as obfuscating or encrypting
RF signals. For instance, Qiao et al. [57] developed Phy-
Cloak, a system that distorts the part of the signal that could
leak physical signatures of humans. Luo et al. [45] countered
unauthorized eavesdropping while retaining the sensing capa-
bilities by physically encrypting Wi-Fi channels, and Liu et al.



RF Sensor Camera Motion Sensor Microphone

Data Type RF signals Visual data Motion Audio signals

Lighting
needs

Works in all lighting conditions, in-
cluding complete darkness

Requires external lighting; limited
use in low-light

Works in all lighting conditions, in-
cluding complete darkness

Works in all lighting conditions, in-
cluding complete darkness

Awareness No visible indicators; can be hidden
or placed behind walls and still func-
tion

Visually detectable with lens or indi-
cator light features, though they can
sometimes be hidden

Typically inconspicuous; often inte-
grated into devices or fixtures

Detectable if standalone but often per-
ceived as passive when integrated
into devices

Range and
Coverage

Penetrates obstacles (e.g., walls);
monitors large areas (multiple rooms)
within signal range

Limited to the camera’s line-of-sight;
covers a single area or room

Limited to a few meters; obstructed
by barriers

Limited by audio propagation; signif-
icantly reduced by walls or barriers

Technical
Limitations

Sensitive to overlapping signals and
material properties of obstacles (e.g.,
metallic); interference from environ-
mental noise

Requires sufficient lighting; limited
in low-light conditions; line-of-sight
required

Limited to line-of-sight; cannot de-
tect through walls; prone to false trig-
gers from environmental factors (e.g.,
pets, wind)

Limited by sound propagation; range
reduced by walls and barriers; sus-
ceptible to overlapping sounds and
background noise

Data
Sensed/
Inferred

Motion, activities, biometrics (e.g.,
breathing, heart rate, identity), emo-
tions

Motion, activities, biometrics (e.g.,
breathing, heart rate, identity), emo-
tions, color, written text

Motion and presence Conversations, activities (e.g., foot-
steps), emotions, identities

Privacy Im-
plications

Collects various data (e.g., bio-
metrics, activities) covertly, operates
through physical barriers, and mon-
itors multiple rooms without user
awareness

Collects various visual and contex-
tual data, including identifiable im-
agery; limited to line-of-sight and
lighting conditions, making it more
noticeable

Limited to basic data collection (mo-
tion and presence only) within the
immediate vicinity of the sensor; po-
tential for false positives

Captures audio data (e.g., conversa-
tions, ambient sounds) within the im-
mediate vicinity; lacks visual im-
agery but susceptible to unnoticed
passive recording

Table 1: Comparison of RF sensors, cameras, motion sensors, and microphones.

[42] developed a fine-grained filter that applies perturbation
to disable some functions while leaving others unaffected.
Liu et al. [44] used methods to erase behavior data from RF
signals while enabling user authentication. Other approaches
included an RF sensing shield that blocks sensing outside a
perimeter [52, 78] or injecting decoy activities [62].

However, Nguyen et al. [49] argue that none of these meth-
ods can stop tracking fully, criticize the lack of commercial
implementations, and note that detecting illegal tracking in
sensor-rich environments remains a challenge. Thus, they
recommend investigating effective RF signal encryption and
access control at the physical network layer. In our work,
we investigate the impact of these proposed defenses (e.g.,
shields [52] and filters [44]) on people’s perceptions.

2.3 Perceptions of Sensing Technology

While there is no research on privacy perceptions of RF sens-
ing, a large body of work has investigated privacy concerns in
smart environments. People often feel uneasy or concerned in
the vicinity of sensing technology [48, 73], reporting concern
about the disclosure of personal data without consent [38, 39].
There are several contextual factors that impact privacy con-
cerns [22, 37]. Emami-Naeini et al. [22], for example, found
that people were more comfortable with data collection in
public, more likely to consent to data collection they consid-
ered beneficial, and more likely to want notifications about
data uses they were uncomfortable with. In addition, the sen-
sor type impacts concern: while people accept temperature
and motion sensors [10, 16, 86], they express strong con-
cerns about cameras and microphones [12, 73]. Prior research
identified bystanders as an especially protection-worthy user

group, as they are typically unable to exert control and are
often oblivious to being tracked [40, 79].

Studies explicitly focusing on surveillance cameras found
that context had a strong impact on concerns. Impactful fac-
tors included the purpose of data collection, where collection
and processing happens, and who has access to the record-
ings [14, 84]. Pierce et al. [55] explored the social and ethical
issues raised by smart cameras, including the tensions be-
tween users and bystanders with diverging preferences and
the potential violation of social boundaries. While some cam-
eras go unnoticed, people who are aware of cameras prac-
tice self-regulating behaviors. Caine et al. [11], for example,
found that older adults engaged in privacy-enhancing behav-
iors around cameras, such as blocking the camera’s view or
hiding things in the room. However, older adults have been
found to be willing to sacrifice privacy if it means increasing
their autonomy through health-related technology [69].

Little research has explicitly investigated RF sensing per-
ceptions. Singh et al. [65] studied whether the human inter-
pretability of sensor data is the primary factor driving privacy
concerns. They used mmWave sensors as an example of de-
vices that collect non-human-interpretable data, comparing
these sensors with cameras and Wi-Fi routers in an online
survey (n=160). Their findings indicate that with non-human-
interpretable data, the inferences drawn from the data play a
more significant role in concerns than interpretability. How-
ever, their study does not explore broader privacy perceptions
of RF technology beyond data interpretability.

In contrast to prior work, our research provides a com-
prehensive exploration of privacy perceptions surrounding
RF sensing. Unlike prior studies, we examine diverse con-
texts, explore the impact of protective measures, and highlight



context-dependent preferences for RF sensors over cameras.
We employ qualitative and quantitative methods and use a
representative sample for improved generalizability.

3 Interview Study Method

Since no prior work investigated users’ perception of RF
sensing, our first study took an exploratory approach. We
conducted 14 semi-structured interviews to understand per-
ceptions of the capabilities and privacy risks of RF sensing.
We gave participants a brief, non-technical introduction, then
asked about their privacy perceptions of RF sensing, how dif-
ferent situations influence these perceptions, differences in
reactions to cameras and RF sensors, and preferences for noti-
fications and regulations (RQ1). We piloted the interview with
two colleagues without RF sensing experience and one RF
sensing expert, revising our protocol based on their feedback.

3.1 Interview Protocol
Interviews were conducted remotely in three parts: explana-
tions, use cases, and preferences. Before starting, we ensured
participants understood the study and consented. Interviews
took approximately one hour, and we compensated partici-
pants with $16 via Prolific.

Explanations. The first part aimed to gauge our partici-
pants’ existing RF sensing knowledge and educate them so
that all participants would share a baseline understanding. We
asked whether participants were familiar with RF sensing,
Wi-Fi sensing, or millimeter wave sensing and, if so, to ex-
plain their understanding of it. Regardless of the participant’s
response, we continued with our detailed, slideshow-assisted
explanation to ensure a common level of understanding.

We carefully refined our explanation to minimize bias. The
explanation focused only on the capabilities of RF sensing
and explained what the technology can and cannot do without
referencing privacy implications. Our piloting confirmed that
this approach supported balanced views. Pilot participants
expressed a range of unique opinions, some intrigued by RF
sensing and others voicing reservations. This diversity of
opinions also suggests that we did not influence participants
toward a particular stance.

The slideshow we used during the interview included im-
ages of cameras and RF sensors, an animated GIF that illus-
trated RF waves, a table outlining capabilities of RF sensors
versus cameras, and images representing the different scenar-
ios. The goal was to make it easier for participants to imagine
themselves in the situations, while also helping them follow
our explanations. The explanation related RF sensing to mo-
tion sensors and radar technology, as we assumed widespread
familiarity with them. Next, we compared cameras and RF
sensors and gave concrete examples of what each can infer.

We ensured that people understood our explanation by ask-
ing them to explain RF sensing and to describe how it differs

from sensing with cameras. We corrected any misconceptions
and repeated explanations whenever necessary. Finally, we
asked participants to share their initial reaction to RF sensing.
Please refer to OSF (see Section 11) for the full interview
protocol, including our explanations and slideshow.

Use Cases. In the second part, we gathered insights on how
contextual factors influence perceptions of RF sensing. We
examined reactions to four scenarios: a health-monitoring
system in a private home (Private Health), a security system
for private home use (Private Security), a security system that
monitors (e.g., for violence) a stadium (Public Security), and
a system providing analytical insights into crowd behavior
in a stadium (Public Analytics). We chose health and secu-
rity scenarios because these are common applications of RF
sensing. In addition, our scenarios contrast different levels
of urgency and benefit (health vs. security vs. analytics). See
Appendix Table 4 for the exact descriptions.

We used a Latin square design for the scenario order to
prevent order effects. We examined different perspectives
within each scenario. For Private Health and Private Security,
we asked participants to adopt the system owner’s perspective.
For Private Health, we asked them to imagine recommending
the system to an older adult. In addition, we asked participants
to imagine being a visitor or living next to a neighbor with an
RF sensor. For Public Analytics and Public Security, we only
asked about the visitor’s perspective. For each scenario and
perspective, we asked participants whether they would prefer
a camera or RF sensor and to explain why. When discussing
the bystander perspectives, we additionally asked whether the
system owner would have any obligation towards them (e.g.,
to inform them about tracking). To limit bias, we avoided
explicitly asking about privacy during the discussions.

Preferences. In the final part of the interview, we asked
participants to reflect on situations where they would prefer
an RF sensor over a camera. We then asked about notification
preferences in detail (e.g., when and how often). We also
asked participants whether there should be laws or regulations
about RF sensing and, if not already discussed, to consider
how RF sensing could impact privacy. We asked participants
for any closing remarks before we thanked them, stopped the
audio recording, and ended the interviews.

3.2 Participants

We recruited 14 participants on Prolific who spoke English
fluently, resided in the US, and were willing to be interviewed.
We used Prolific’s screeners to acquire a sex-balanced sample:
seven female and seven male participants between 23 and
63 years old (M = 39.8, SD = 13.6). Ten participants had
full-time jobs, two part-time, and two were job-seeking.
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3.3 Data Analysis
We recorded a total of 10.18 hours (M = 43.6 minutes,
SD = 9.6 minutes) of interview audio, which we transcribed
using Zoom’s cloud transcription and an offline instance of
Whisper. After manually correcting transcripts, we performed
thematic analysis [8]. To increase reliability, two researchers
independently coded two random interviews, after which they
discussed codes, resolved ambiguities, and formed a code-
book. After that, they coded a third interview using this code-
book and again discussed codes. Finally, one researcher coded
the rest of the interviews before three more researchers joined
to form code groups and overarching themes. We repeatedly
revised these themes by comparing code snippets. This pro-
cess resulted in four themes, 18 code groups, and 273 codes.

4 Interview Findings

We identified four main themes: RF Sensing Privacy
Concerns, Camera vs. RF Sensing, Notifications, and
Laws/Regulations.

4.1 RF Sensing Privacy Concerns
Participants had diverse opinions on RF sensing, highlighting
the privacy-utility trade-off. Concerns were dependent on the
scenario, type of data collected, location, exposure frequency,
notification, protective options, trust in device owner, and
user-specific factors.

Several participants were generally more comfortable with
medically-required systems than with other use cases (P3,
P4, P13): “I would be perfectly fine with that. It’s for their
health, that is paramount” (P13). Participants were also com-
fortable with RF sensing in the security scenario, expressing
willingness to trade privacy for security (P1, P11). In con-
trast, participants were highly concerned when a neighbor
had RF sensing, fearing it could capture data from their own
apartment (P2, P4, P7, P11). Participants were specifically
concerned about neighbors receiving health data (P2) or pri-
vate activities: “They can tell your movements and... you
know, there’s always romantic times” (P6). Similarly, partici-
pants were concerned about RF sensor exposure as a visitor,
where private information may be uncovered (P2, P7), such
as early-stage pregnancy.

Participants frequently brought up the type of data col-
lected, inferred, and stored (P2, P4, P8, P12). They were es-
pecially concerned about biometric data collection (P4, P8)
and user identification (P8, P11).

Location also impacted concerns. Participants did not mind
being monitored in public, as they expected it (P3, P5, P10,
P11). Yet, even in public, people expressed concerns about
data collection in private areas, such as restrooms (P2). Expo-
sure frequency also played an important role: “Unless it’s a
place I spend a lot of time. I probably really don’t care” (P12).

However, participants were generally accepting of RF sens-
ing systems if they were notified in advance, if they knew
what information could be collected and inferred, and knew
where data is processed and stored (P3, P10, P11): “Similar
to disclosures on a website... I would want to know where that
was going, how it was being interpreted, and by whom” (P11).
Participants also felt that protective options, such as setting
a sensing perimeter or regulations, would mitigate privacy
concerns (P4, P8, P12).

Many participants emphasized that their trust in the device
owner impacts their concerns (P1, P2, P8, P10, P11, P13).
While participants were generally comfortable with RF sen-
sors of trusted entities, many expressed concerns about sys-
tems that belonged to an untrusted owner: “If it’s the neigh-
bor’s system, I’m okay with it. If it’s Big Box security company
storing the data and then selling it, I’m not okay with it” (P8).

Finally, participants discussed personal factors, such as
familiarity with RF sensing (P4, P8). Participants expected
concerns to diminish with familiarity (P8). P4 highlighted
additional concerns for at-risk populations: “I could see it
being a problem for people of color. . . LGBT, people who are
at risk for being profiled or monitored more.”

4.2 Camera vs. RF Sensing

When deciding between cameras and RF sensors, participants
weighed various factors against each other. The decision pro-
cess generally involved utility and privacy considerations.

Almost everyone knew cameras provide visual evidence,
which they desired for security-relevant scenarios (e.g., pur-
suing criminals) (P1–P5, P7, P8, P9, P11–P14). In contrast,
some preferred the RF sensor because it did not collect visual
data, giving them a feeling of privacy (P3, P4, P6, P8, P12):

“I’m somebody who likes to walk naked in my house. . . so I
don’t want cameras” (P3).

At the same time, several participants preferred the RF
system as it would not have blind spots, in contrast to cam-
eras (P6, P9–P13). This is especially relevant for the health
use case: “If they fall and say they render themselves uncon-
scious, but they’re still breathing, you know, you’d be able
to tell” (P11). In addition, the RF sensor cannot be easily
obscured, is not sensitive to bad visibility, and might still be
able to recognize individuals if they mask themselves (P1,
P6, P13): “Essentially. . . anyone covering the camera and
whatnot. Or if I were to get a package, and someone actually
tries to hide themselves taking a package” (P6).

Using similar reasoning, some preferred the camera to re-
strict the field of view (P4, P6, P13): “That way I could limit
it to. . . looking outside the house rather than being aware of
everything” (P4). Participants also preferred their neighbor to
use a camera as it would not penetrate walls and infringe on
privacy (P10–P14). Interestingly, P12 preferred the RF sens-
ing system as a hacker could not make sense of the data: “I
just don’t see how even the average. . . hacker, who might hack
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into a home system—what they would do with that data.”
Finally, most participants preferred whichever system they

believed would offer more accurate data and provide the most
utility in the specific situation (P2, P4, P6–9, P11, P12, P14).

4.3 RF Sensing Notifications

All participants wanted to be notified about RF sensing but
differed on preferences for modalities, frequency, and who
should provide them. In general, the greater someone’s pri-
vacy concern, the greater their desire to be notified.

Despite wanting notifications, participants noted that pri-
vate individuals are not obligated to provide them (P1, P3, P5,
P6, P10, P12). Participants especially wanted notifications in
private spaces (P2, P4, P12, P14), but they accepted not being
informed in public, where they expected monitoring (P3, P10,
P11, P12). In addition, notification desire was mediated by
privacy-relevant factors such as trust in the device owner (P5,
P11); personal data collection, inferences, storage (P2, P4, P8,
P11, P12); and RF exposure frequency (P7).

Several notification mechanisms were discussed. Most
suggested public signage, inspired by video surveillance dis-
claimers (P2–P5, P7, P8, P11): “No more than ‘smile, you’re
on camera.’ You know, we see those signs all the time” (P11).
In private settings, participants expected their neighbor or host
to verbally inform them about such a system (P7, P12, P14):

“I would prefer if they just knocked on my door and said: Hey,
just so you know, I’ve installed some sensors” (P14). How-
ever, they only expected such verbal notifications if they had
a friendly relationship with the owner; otherwise, participants
again preferred signage (P4). Some suggested push notifica-
tions (P6, P11, P13). However, others noted that those get
overwhelming quickly: “[It’s] insanely, incredibly prevalent,
right? . . . it would go off constantly” (P1). Other suggestions
included on-demand lookup where the user would scan (e.g.,
through an app) for RF sensors (P1), email notifications (P10),
social media (P10), or during Wi-Fi sign-in (P2).

Notification frequency preferences included: once if the
system owner is trusted (P4, P10), every time when enter-
ing the RF tracking range (P11), and only when changes
occurred in a previously consented tracking space (P4). Most
participants believed the system owner should deliver notifi-
cations (P2, P3–P7, P10, P12–P14), whereas others believed
the manufacturer (P10), the data processor (P11), or even the
Wi-Fi carrier (P6) should.

4.4 RF Sensing Laws and Regulations

Participants proposed instituting laws around RF sensing, es-
pecially to protect sensitive data like demographic (P4), med-
ical (P6, P14), activity (P14), and biometric data (P11). They
wanted regulations in places with elevated expectations of
privacy (P4, P12, P13): “I think your home is your sanctuary.

Any sensing device that can penetrate it needs to be regu-
lated” (P13). P1, alarmed about potential inferences, called
for safeguards to prevent criminals from purchasing or obtain-
ing RF systems, and other participants suggested implement-
ing notifications similar to those used in video surveillance
systems (P4, P7, P8). In contrast, P5 proposed a law that
would arguably make the surveillance more invasive:“You’re
required to tell someone: I’m concerned of Mr. Smith next
door. He’s been very depressed. But I’m also on my monitor,
I notice this is his emotions.”

5 Online Vignette Survey Method

Through interviews, we uncovered factors that influence per-
ceptions of RF sensing; however, the extent of this influence
is unclear. Hence, we conducted a large-scale online between-
subjects vignette (17 scenarios across three dimensions) sur-
vey on Prolific to answer our second and third research ques-
tions. We recruited 510 participants and asked each to answer
questions about one scenario. First, we provided participants
with a text version of the RF sensing explanation, refined
from our interview study. After a successful comprehension
check, participants were randomly assigned one of 17 vignette
descriptions. They then answered questions about the technol-
ogy in the vignette, responding to questions twice in random
order: once for a camera and once for an RF sensor. Fol-
lowing this, we asked how protective measures affect their
perceptions. Finally, we asked about participants’ ownership
of camera systems, demographics, and technology proficiency.
Refer to OSF (see Section 11) for the full questionnaire.

5.1 RF Sensing Explanation

Based on our interview observations, in which no participant
initially knew the full capabilities of RF sensing, we started by
thoroughly explaining RF sensing technology in the survey,
as it is essential for participants to have a consistent baseline
understanding of the technology. Building on our interview
experience, we used a refined explanation of RF sensing in the
survey: we removed the motion sensor analogy and clarified
RF sensing’s ability to distinguish individuals, by noting that
training with additional information is needed to link individ-
uals with names. To ensure accurate understanding, we asked
participants to correctly complete a comprehension check
before proceeding. The check included four multiple-choice
questions and one true/false question. These questions were
straightforward for those who had read the provided expla-
nation (which was available during the check). In addition,
we initially added two free-text questions (however, those
were not part of the comprehension check). We asked partic-
ipants to explain RF sensing capabilities and to explain the
difference between RF sensing and cameras. If participants
answered any closed-ended comprehension check incorrectly,
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they had a second chance. If their answer remained incorrect,
we ended the survey.

Piloting. Given the importance of our explanations, we ex-
tensively tested our approach by gathering feedback from five
HCI researchers and refining questions based on feedback. We
then tested our survey on incremental batches of Prolific par-
ticipants. Two of the first five participants likely used LLMs
in their responses, as their responses were flawless, with GPT-
like characteristics (e.g., punctuation, grammar, wordiness).
Thus, we introduced LLM countermeasures: asking for self-
attestation of no LLM use (similar to “oath taking” [35]),
disabling paste, and introducing a keystroke counter. We then
recruited 15 additional participants. None of them appeared
to have used LLMs and only two would have been screened
out, which we considered an acceptable outcome. We did not
include their responses in our analysis. For the final survey,
we added a question asking whether participants had heard
about RF sensing and, if so, to briefly describe the capabili-
ties. Regardless of the response, we showed the explanation
to ensure a common understanding. Further, we only kept
one free-response question, where we asked participants to
explain the differences between cameras and RF sensors.

5.2 Vignettes
We investigated factors impacting interview participants’ RF
sensing perceptions: use case, perspectives, and locations.
We used the same use cases as the interviews: Private Health
monitoring, Private Security, Public Security, and Public Ana-
lytics. Since different perspectives led to varying preferences,
we used our previous interview perspectives, where the partici-
pants: imagined they owned such a system (Owner), imagined
they were visiting a place with such a system (Visitor), and
imagined that their neighbor installed such a system (Neigh-
bor). Finally, we used locations that were perceived with
different sensitivities in prior work [73]: the bathroom as a
sensitive location and the hallway as a non-sensitive location.
In addition, we added the front porch for Private Security
as it fits the narrative for both cameras and RF sensors. We
combined these factors to construct our scenarios. However,
not all combinations are realistic, such as a health monitor
placed on a front porch. After eliminating such instances, we
used 17 scenarios in our survey (see Appendix Table 5).

5.3 Questionnaire
After participants read our RF sensing explanations and
passed the comprehension check, we randomly presented
one of the 17 scenarios and asked participants to read and
immerse themselves in it. As we used a between-subject de-
sign, every participant saw and rated one scenario. To ensure
that participants had understood the scenario, we asked two
reading check questions that they had to answer correctly to
continue.

Next, we asked participants about scenario-specific prefer-
ences between cameras and RF sensors. Then, we asked the
same set of questions twice, once for a camera and once for
an RF sensor-based system (order was random). We asked
(1) how useful participants found the system, (2) how com-
fortable they felt with the technology and how sensitive they
considered the (3) collected data, and (4) the location of the
system. We asked about perceived comfort and technology
preference, as we had found in the interviews that these did
not necessarily correlate; people could be concerned about a
device but still prefer it over another. Based on interview find-
ings, we also asked about utility, data sensitivity, and location
sensitivity. We asked all questions on five-point, fully labeled
Likert scales. We used bipolar scales wherever possible. Refer
to OSF (see Section 11) for the full question text.

Our next section investigated how changes to the scenario
affect perceptions. Specifically, we asked whether protections
would affect comfort or technology preference. These protec-
tions were based on those identified by interview participants
and discussed in prior work: an RF shield that blocks RF sens-
ing outside a perimeter, algorithmic filtering that removes
irrelevant personal data (e.g., only stores older adult data in
private health scenario), a law that prohibits unauthorized data
use, a reduced exposure frequency to “only once or twice,”
and a notification about RF sensing.

In the final section, we asked participants about their own-
ership of camera-based systems, collected demographic infor-
mation, and assessed their tech-savviness [59].

5.4 Participants

We used Prolific to recruit a U.S. demographically-
representative sample. Participants were recruited in batches
until we obtained 30 ratings per scenario. After each batch, we
checked whether participants failed the comprehension check
twice. If so, we asked them to return their submission and
excluded them from both the analysis and the reported sample
size. In total, we excluded 161 participants. This resulted in
a final sample of 510 participants, all of whom passed the
comprehension check. To verify that the groups did not differ
significantly in demographics, we conducted Chi-square tests
for categorical variables (gender, tech-savviness, and educa-
tion) and an ANOVA for age. All tests were non-significant
(p > .05), indicating no statistically significant demographic
differences between groups.

Our participants were between 18 and 95 years old (M =
45.39, SD = 15.71), mostly male (N = 252) or female (N =
246), some (N = 10) non-binary, one self-described as dual
gender, and another as transgender. Most (N = 191) held a
bachelor’s degree, some college no degree (N = 114), or held
a master’s degree (N = 67). Participants were moderately
tech-savvy: most (N = 220) sometimes provided tech advice.
Many were familiar with camera-based smart devices, with an
average of 0.75 devices owned per person (SD = .17). Exclud-
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ing those who owned none (N = 240), the majority owned
a camera-based security system (N = 225), followed by pet
surveillance cameras (N = 60) and cameras to monitor people
in their homes (N = 43). Nearly half (48%) of participants
reported never hearing of RF sensing before, whereas 267
(52%) said they had. To assess familiarity, we asked those
who claimed they knew the technology to explain, ultimately
concluding that understanding was nearly nonexistent. The
survey had a median completion time of 15 minutes, and we
compensated participants with $4 ($16 per hour).

5.5 Analysis

We used labeled Likert scales, yielding ordinal data: ordered
but with unequal intervals [31]. Thus, we used Aligned Rank
Transform (ART) ANOVAs as they allow factorial analyses
(including interactions) for nonparametric ordinal data like
ours [75]. For post-hoc analyses, we used the ART-C proce-
dure [21] with Bonferroni corrections applied. We report par-
tial eta-squared for effect size estimation. Finally, to analyze
the relationship between two variables, we used Kendall’s
Tau. Due to the large number of results, we only report those
relevant to our research questions. Refer to the supplementary
material (Section 11) for all results. We thematically analyzed
qualitative text responses, reusing our interview codebook
due to question similarity.

6 Online Vignette Survey Results

We present RF sensing attitudes using three high-level mea-
surements: comfort with the scenarios, preference between RF
sensing and cameras, and the impact of protective measures
on comfort and preference (RQ2, RQ3). Given numerous
interaction effects, we often filtered the data by variables
to identify trends. We contextualize the quantitative results
with qualitative findings and report scenario IDs alongside
participant IDs for context (see Appendix Table 5).

6.1 Context Impact on Perceived Comfort

Summary. Overall, participants felt significantly more com-
fortable with cameras in security-relevant scenarios, when
placed outside their homes, and from a neighbor’s perspec-
tive. For all non-security-relevant scenarios and especially in
private locations, participants felt more comfortable with RF
sensors. While our results suggest that reducing the exposure
frequency is an inadequate protection measure, all other mea-
sures we asked about led to significant comfort improvements.
We further found that higher perceived utility comes with
higher comfort and that perceived data and location sensitiv-
ity increase concerns.

We first investigated the impact of the context factors
Sensor, Use Case, Perspective, and Location on the

Factor dfn dfd F p-value η2
p

Sensor 1 493 80.951 <.001∗∗∗ .141∗∗∗
UseCase 3 493 3.199 .023∗ .019∗
Perspective 2 493 0.112 .894 .000
Location 3 493 28.580 <.001∗∗∗ .148∗∗∗
Sensor×UseCase 3 493 25.048 <.001∗∗∗ .132∗∗∗
Sensor×Perspective 2 493 41.215 <.001∗∗∗ .143∗∗∗
UseCase×Perspective 1 493 0.084 .772 .000
Sensor×Location 3 493 43.837 <.001∗∗∗ .211∗∗∗
UseCase×Location 3 493 6.897 <.001∗∗∗ .040∗∗∗
Perspective ×Location 3 493 1.131 .336 .007
Sensor×UseCase×Persp. 1 493 0.012 .914 .000
Sensor×UseCase×Loc. 3 493 10.306 <.001∗∗∗ .059∗∗∗
Sensor×Persp.×Loc. 3 493 3.247 .022∗ .019∗
UseCase×Persp.×Loc. 1 493 0.607 .436 .001
Sensor×UseCase×Persp.×Loc. 1 493 0.036 .850 .000

Table 2: ART ANOVA results for the impact of all factors
on comfort, including the effect sizes, numerator degrees of
freedom (dfn), and denominator degrees of freedom (dfd).

perceived comfort. Refer to Table 2 for the statistical re-
sults and effect sizes. We found significant main effects
for Sensor, Use Case, and Location. However, reducing
the meaningfulness of these effects [30], we also found
significant interaction effects for Sensor × Use Case,
Sensor × Perspective, Sensor × Location, Use Case
× Location, Sensor× Use Case× Location, and Sensor
× Perspective × Location. To better understand these ef-
fects, we ran post-hoc tests, finding that most of the significant
interaction effects were caused by the bathroom Location
and the neighbor Perspective. As a result, we analyzed the
data both with and without these variables included.

6.1.1 Comfort Without Bathroom and Neighbor

While participants were generally more comfortable with
RF sensors, they tended to be more accepting of cameras in
security scenarios. They were especially uncomfortable with
cameras in the public analytics use case. We further found that
participants are more comfortable with an RF sensor indoors,
whereas they are comfortable with cameras on their porches.

We first examined our data without the factors bath-
room and neighbor included and found significant main
effects for Sensor (F(1,232) = 8.336, p = .004, η2

p =

.035), Use Case (F(3,232) = 6.9, p < .001, η2
p = .082),

and Location (F(1,232) = 4.375, p = .038, η2
p = .019),

as well as significant interaction effects for Sensor × Use
Case (F(3,232) = 15.144, p < .001, η2

p = .164) and Sensor

× Location (F(1,232) = 16.456, p < .001, η2
p = .066). See

Figure 1 (a) for a visualization of Sensor × Use Case. Post-
hoc tests revealed that participants were significantly more
comfortable with a camera in the private security (p < .001)
and public security use case (p < .001) than in the private
health use case and significantly more comfortable with a
camera in the public security compared to the public ana-
lytics use case (p = .01). We further found that participants
were significantly more comfortable with an RF sensor in



Figure 1: Comfort ratings: (a) across use cases and (b) loca-
tions (both excluding bathroom and neighbor), (c) from the
neighbor perspective, (d) in a bathroom.

the private health, private security, public security, and public
analytics use case than they were with a camera in the private
health use case (all p < .001) and that they were significantly
less comfortable with a camera in the public analytics than
they were with an RF sensor in the private health (p = .008)
or public security (p = .045) use case.

Participants explained their preference for cameras in secu-
rity scenarios with the fact that they would have a much harder
time making sense of RF’s raw data than camera footage (N =
13): “I can see that someone is there, but cannot tell who. That
is extremely scary, in my opinion” (P505RNH). The greater
comfort with RF sensors over cameras stemmed from a gen-
eral discomfort with the collection of visual data (N = 28).
Seven participants elaborated on their discomfort with visual
data, noting that camera footage is easily interpretable, un-
like RF sensing data, which requires processing. This led to
greater concern about cameras being hacked and sensitive im-
ages being shared (N = 31). Additionally, many participants,
finding the systems highly useful, expressed concern that the
limited field of view of cameras could affect performance
(N = 43): “The camera cannot detect if the elderly person
has fallen at other locations in the house unless the bathroom
door is open” (P60HV B).
Sensor × Location is visualized in Figure 1 (b). A post-

hoc test revealed that participants were significantly more
comfortable with a camera than with an RF sensor on the
front porch (p= .022) and a camera in the hallway (p< .001).
In addition, participants were significantly more comfortable
with an RF sensor in the hallway than with a camera (p <
.001). Sixteen participants described being uncomfortable

with cameras in private spaces and more comfortable with a
camera in public spaces, such as a stadium’s hallway. P11ROF
explained: “this is not a location where someone should have
an expectation of privacy, so I am comfortable.” Only seven
participants did not want any type of sensing technology in a
private space.

6.1.2 Comfort in the Context of Bathroom and Neighbor

To complement the previous insights, we next looked at the
Location bathroom and the Perspective neighbor in isola-
tion. We found that participants in the neighbor perspective
feel more comfortable with a camera than with an RF sensor.
We again found higher comfort with cameras in security use
cases. Unsurprisingly, we found that participants are generally
uncomfortable with cameras in bathrooms.

We first filtered the data to only keep the neigh-
bor Perspective, which revealed a significant main ef-
fect for Sensor (F(1,87) = 13.648, p < .001, η2

p = .136)
and a significant interaction effect for Sensor × Use
Case (F(1,87) = 9.423, p = .003, η2

p = .1), see Figure 1 (c).
Post-hoc tests revealed that participants presented with a
neighbor-perspective scenario were significantly more com-
fortable with a camera than an RF sensor in the private secu-
rity use case (p < .001) or private health use case (p = .027).
Moreover, they were also significantly more comfortable with
a camera in the private security use case than in the private
health use case (p = .014). Our qualitative analysis helps con-
textualize this. Here, 25 participants explicitly mentioned that
they were more comfortable with a camera in the neighbor
scenario, as the sensing area can be restricted much more
easily: “I don’t want my neighbor knowing what I am doing
in my own home, I’m fine with a camera because detection
ends when I close my front door” (P296HNA). In addition, 20
participants explicitly mentioned that they were concerned
about RF sensors’ ability to sense through walls.

Finally, we filtered the Location to only keep the
bathroom, which revealed a significant main effect for
Sensor (F(1,174) = 214.82, p < .001, η2

p = .552). Figure 1
(d) shows that participants were significantly more comfort-
able with an RF sensor than with a camera in the bathroom,
independent of the Use Case and Perspective. Participants
explained that they were very uncomfortable with visual data
getting collected in a bathroom (N = 98), and 10 participants
even considered cameras in a bathroom illegal.

6.1.3 Impact of Protective Measures on Comfort

We next examined the impact of different protective measures.
Overall, participants found reducing exposure frequency to be
inadequate protection. All other protections had a significantly
positive impact compared to the original ratings, though the
effect varied by use case and perspective. From a neighbor’s
perspective, all measures significantly reduced concerns.



Figure 2: The comfort ratings for the different Protective Measures by the different Use Cases compared to the original
comfort rating without protections. All were rated on a 5-point Likert scale.

We found significant main effects for Protection
Type (F(5,2465) = 66.561, p < .001, η2

p = .12), Use

Case (F(3,493) = 4.107, p = .007, η2
p = .024), and

Perspective (F(2,493) = 5.479, p = .004, η2
p = .022);

and significant interaction effects for Protection Type ×
Use Case (F(15,2465) = 3.991, p < .001, η2

p = .024) and
Protection Type × Perspective (F(10,2465) = 5.104,
p < .001, η2

p = .02). Similar to before, we conduct further
analyses to untangle these interaction effects.

Impact of Protections in the Context of Use Case. First,
we investigated Protection Type × Use Case by looking
at each Use Case individually, see Figure 2. We found sig-
nificant main effects for Protection Type for the public
security (F(5,290) = 17.211, p < .001, η2

p = .229), public
analytics (F(5,290) = 12.574, p < .001, η2

p = .178), private
security (F(5,1160) = 34.909, p < .001, η2

p = .131), and
private health (F(5,725) = 17.624, p < .001, η2

p = .108)
use cases. Yet, for private security (F(10,1160) = 3.641,
p < .001, η2

p = .03) and private health (F(10,725) = 2.661,
p = .003, η2

p = .035), we also found significant interaction
effects for Protection Type× Perspective. We report all
significant comparisons compared to the original ratings.

In the public analytics use case, people felt significantly
more comfortable with algorithmic filtering (p = .002) and
significantly less comfortable with reducing the exposure fre-
quency (p = .021). In the public security scenario, people
only felt less comfortable with reducing the exposure fre-
quency (p < .001); all other protections did not significantly
impact comfort ratings. Due to the interaction effects for the
two private use cases, we again had to filter by perspective.
Thereby, we found that in the private security use case, as an
owner or visitor, people felt more comfortable with a protec-
tive law in place (p = .018) when being notified (p = .009)
and significantly less comfortable with reducing the expo-
sure frequency (p < .001). From the neighbor’s perspective,
they felt significantly more comfortable with all protections
(RF shield, law, and notification p < .001, algorithmic filter
p = .005). While we did not find any significant improve-
ments for the private health use case from any perspective,
we found that owners and visitors would be significantly less

comfortable with reducing the exposure frequency (p < .001).

Impact of Protections in the Context of Perspective. Next,
we investigated Protection Type × Perspective by fil-
tering the data for each perspective, see Figure 3. For
owners, we found significant main effects for Protection
Type (F(5,725) = 15.079, p < .001, η2

p = .094), Use

Case (F(1,145) = 7.887, p = .006, η2
p = .052), and

Location (F(2,145) = 4.355, p = .015, η2
p = .057). Post-

hoc tests revealed that owners felt significantly more comfort-
able with a protective law (p < .001). From the visitor per-
spective, we found a significant main effect for Protection
Type (F(5,1305) = 39.64, p < .001, η2

p = .132) and a
significant interaction effect for Protection Type × Use
Case (F(15,1305) = 1.856, p = 0.024, η2

p = 0.021). After
filtering by Use Case, post-hoc tests showed that visitors
felt significantly less comfortable with a reduced exposure
frequency in the private health (p = .021) and public secu-
rity (p= .002) use cases. Finally, for the neighbor perspective,
we again only found a significant main effect for Protection
Type (F(5,435) = 17.244, p < .001, η2

p = .165). Post-hoc
tests showed that neighbors felt significantly more comfort-
able with an RF shield in place, with algorithmic filtering,
with a protective law, and when being notified (all p < .001).

6.1.4 Impact of Sensitivity and Utility

Lastly, we conducted correlation analyses to see if the per-
ceived sensitivity of the collected data or location, and the
perceived utility, impact comfort. We found that data and
location sensitivity negatively impacted participants’ com-
fort, whereas a higher perceived utility also led to higher
comfort. We found a moderate negative correlation for lo-
cation sensitivity (rτ =−0.329, p < .001), meaning that the
more sensitive participants consider a location, the less com-
fortable they are with the situation. We also found a mod-
erate negative correlation for data sensitivity (rτ = −0.362,
p < .001), which shows that increased data sensitivity comes
with greater discomfort. Finally, we found a strong positive
correlation (rτ = .502, p < .001) for perceived utility, indi-
cating that the more useful participants considered a system
for themselves, the more comfortable they were with the sit-



Figure 3: The comfort ratings for the different Protective Measures by the different Perspectives compared to the original
comfort rating without protections. All were rated on a 5-point Likert scale.

Figure 4: Plots (a) - (c) show preference without Location
bathroom for (a) use cases, (b) perspectives, and (c) locations;
(d) shows preferences only for the bathroom.

uation. Participants echoed this in their free-text responses,
where 33 participants mentioned being comfortable with a
sensing system simply because they considered the use case
sensible and uncomfortable when they felt the use case would
not benefit them.

6.2 Context Impact on Technology Preference

Summary. We investigated how different contextual factors
impacted preferences between cameras and RF sensors. Par-
ticipants preferred cameras for security use cases, since they
can provide visual evidence to prosecute criminals. They also
preferred that neighbors install cameras because those would
not infringe on their privacy as they cannot penetrate walls.
Furthermore, we found that participants preferred cameras in
non-sensitive locations outside their houses. Protective mea-
sures did not shift their technology preferences significantly.

Comparing preferences for cameras and RF sensors, we
found significant main effects for Use Case, Perspective,
and Location. We also found significant interaction effects
for Use Case × Location and Perspective × Location.
See Table 3 for the results and effect sizes. Post-hoc tests

showed that most significant effects were again triggered by
the bathroom, so we again filtered our data by the Location
bathroom. Figure 4 (d) shows preferences for devices in the
bathroom, with a strong preference for RF sensors.

We first looked at our data without the bathroom included
and found significant main effects for Use Case (F(3,319) =
15.86, p < .001, η2

p = .13), Perspective (F(2,319) =

8.318, p < .001, η2
p = .05), and Location (F(2,319) =

10.183, p < .001, η2
p = .06). Post-hoc tests for the Use Case

revealed that participants significantly preferred a camera in
the private security (p < .001) and public security (p = .004)
use cases compared to the private health use case, see Fig-
ure 4 (a). They significantly preferred a camera in the public
security (p= 0.03) and private security (p= 0.001) compared
to the public analytics use case.

Our participants explained that they preferred the RF sen-
sor for its comprehensive coverage (N = 154): “It can sense
in all directions and through walls, I would be able to se-
cure a much larger area” (P28ROH). An additional 105 par-
ticipants preferred the RF sensor because it did not capture
visual data, even though some people realized that the sen-
sor captures a lot of data at once, possibly making it more
privacy-invasive after all: “I realize the RF sensor captures
info that is possibly more intrusive, for some reason, it feels
less invasive” (P414RNF ). In security scenarios, participants
preferred cameras for providing visual evidence to track and
prosecute criminals (N = 69): “If someone was to break into
my home, I would rather have the ability to see them so that
they can be caught by the police” (P43RNH ). Yet, 11 partici-
pants preferred the RF sensor for security scenarios, believing
cameras would be easier for criminals to evade: “You can
stay in the blind spots of cameras or even cover them, I am
unaware how that is possible for [RF] sensors” (P195RV B).

Factor dfn dfd F p-value η2
p

UseCase 3 493 23.859 <.001∗∗∗ .127∗∗∗
Perspective 2 493 16.105 <.001∗∗∗ .061∗∗∗
Location 3 493 26.492 <.001∗∗∗ .139∗∗∗
UseCase×Persp. 1 493 0.587 .444 .001
UseCase×Loc. 3 493 6.374 <.001∗∗∗ .037∗∗∗
Persp.×Loc. 3 493 2.763 .042∗ .017∗
UseCase×Persp.×Loc. 1 493 1.140 .286 .002

Table 3: All factors impact on tech. preference ART ANOVA.



Next, we ran post-hoc tests for Perspective and found
that participants in the neighbor perspective significantly pre-
ferred the camera compared to the owner (p = 0.002) and
visitor (p = 0.004), see Figure 4 (b). Finally, post-hoc tests
for the Location revealed significant preference for the cam-
era on the porch compared to anywhere (p = 0.03) and hall-
way (p < .001), see Figure 4 (c). We also ran analysis with
only Location bathroom but did not find significant effects.

Investigating the impact of protective measures on pref-
erences, we found significant main effects for Protection
Type (F(5,2465) = 5.253, p < .001, η2

p = .011), Use

Case (F(3,493) = 17.658, p < .001, η2
p = .097),

Perspective (F(2,493) = 18.214, p < .001, η2
p = .069),

and Location (F(3,493) = 20.608, p < .001, η2
p = .111),

and significant interactions for Protection Type ×
Use Case (F(15,2465) = 2.037, p = .01, η2

p = .012),
Use Case × Location (F(3,493) = 2.692, p = .046,
η2

p = .016), Perspective × Location (F(3,493) = 3.335,
p = .019,η2

p = .02), and Protection Type × Use Case

× Location (F(15,2465) = 1.731, p = .04,η2
p = .010).

However, post-hoc tests uncovered no differences.

7 Limitations

We used interviews and surveys to investigate perceptions
of RF technology. While these methods are frequently used
for analogous goals, especially when discussing emerging
technologies [74], they inherently rely on self-reporting and
the biases that come with it. For example, even though par-
ticipants heavily weighed perceived utility against privacy
concerns, their perceptions might differ if they actually used
RF sensing systems. Participants’ limited familiarity with RF
sensing also impacted concerns, with some expressing that
they were unsure about the exact boundaries and capabili-
ties. Prior work has repeatedly shown that higher familiarity
tends to decrease concerns [5, 73]. On the other hand, expe-
rience with (or media exposure to) actual privacy invasions
associated with RF sensors could increase concern.

Since most participants were initially unfamiliar with RF
sensing’s full capabilities, we provided a detailed explana-
tion before asking questions about it. Although we carefully
crafted these explanations and confirmed through piloting that
they did not lead to skewed perceptions, explaining unfamil-
iar technology may inherently introduce some bias. It would
therefore be interesting to repeat our investigation after RF
sensors have found more widespread adoption.

We recruited a U.S.-representative sample to reduce sam-
pling bias and improve generalizability. While this approach
helps minimize confounds and provides a solid foundation for
future research, it also limits the applicability of our findings
to other cultures. For instance, the U.S. population is gen-
erally more privacy-conscious than populations in countries
like India and China [71], and less privacy-conscious than

Europeans [70]. Beyond cultural factors, other demographic
characteristics, such as gender, may also shape perceptions of
RF technologies and warrant further exploration. Thus, future
research could include more diverse cultural contexts and
explicitly investigate demographic differences to understand
how RF perceptions vary across populations.

8 Discussion

RF sensing introduces unique challenges: unlike visual sen-
sors, RF sensors can operate through walls, are difficult to
detect, and cannot be blocked easily. This perceived invisi-
bility, coupled with limited user control and the technology’s
powerful inferential capabilities, raises novel concerns. While
prior research has focused on data flows to third parties and
the experiences of bystanders, our results suggest that RF
sensing amplifies these dynamics. People may be unaware
that data collection is occurring and, as bystanders, have even
less leverage to negotiate with device owners. Importantly,
we show that preferences between RF sensors and cam-
eras are context-dependent; RF sensing is not inherently
more privacy-preserving, despite common assumptions.
We discuss our key findings related to balancing utility with
privacy concerns, ethical considerations about marketing RF
sensing as privacy-preserving, and legal discussions.

8.1 RF Sensing: Balancing Concerns & Utility
To the best of our knowledge, we are the first to explicitly
investigate people’s perceptions of RF sensing. In contrast to
prior that work primarily examined data interpretability and
inferences [65], we focus on how contextual factors affect
comfort and preferences between RF sensors and cameras. We
explored this through three questions: RQ1 measured general
perceptions of RF sensing; RQ2 investigated how different
contextual factors shape comfort with RF sensors, and RQ3
examined the impact of protective measures on comfort.

Participants initially lacked awareness of RF sensing. How-
ever, upon learning about it, they expressed nuanced views,
with contextual factors heavily shaping privacy concerns. This
aligns with Nissenbaum’s theory of Contextual Integrity: pri-
vacy is violated when data handling does not align with con-
textual norms [50]. Further, participants weighed RF sen-
sors’ perceived benefits, such as sensing large areas regardless
of obstructions and lighting, against privacy concerns. This
tension between utility and privacy resonates with the pri-
vacy calculus theory: users balance perceived benefits against
risks [17]. Accordingly, when perceived benefits weighed
heavier, participants tolerated RF sensing. For instance, the
desire for a comprehensive health monitoring system out-
weighed concerns. In contrast, these very capabilities, espe-
cially to “see through walls,” were seen as intrusive in other
contexts. This dichotomy of comfort reflects findings from
previous research on sensor-based systems, which shows that



people accept sensors in public or medical settings but reject
them in private spaces [22, 89]. Additionally, our second study
highlighted that concerns and protective measures are subject
to contextual variations. While reducing exposure frequency
was generally not seen as an effective solution, participants
responded positively to notifications, regulations, algorithmic
filtering, and limiting the RF tracking range. However, their
preferences for these measures varied significantly depending
on context. This suggests that regulations and technological
safeguards should not follow a one-size-fits-all approach but
should be tailored to individual needs.

Key Finding 1: Concerns about RF sensing are highly
context-dependent. Features that make RF sensing valuable
in certain scenarios raise serious privacy concerns in others.

Recommendation: RF sensor owners and those being
sensed should have control over when and how sensing hap-
pens. Both sides benefit from transparency and clear limits on
data use through policy and technical measures. We expect
that balancing utility and privacy will be key to gaining user
trust and widespread acceptance of RF sensing.

8.2 Are Privacy-Preserving Claims Accurate?

One key selling point of RF sensors is their claimed privacy
protection due to not collecting visual data [32]. Initially, this
seems valid, as research reports users’ concern with visual
data in private spaces [6, 73]. Some of our findings support
this: participants were uncomfortable with cameras in their
homes, particularly in sensitive areas such as bathrooms. How-
ever, our findings also reveal that RF sensors are not a silver
bullet for privacy. Even though people generally found utility
in health and safety scenarios, they were concerned about
sensors picking up private activities irrelevant to the use case.

Additionally, some participants were uncomfortable with
scenarios where RF sensors would sense through walls, es-
pecially when they did not own the sensor. This represents a
fundamental contradiction in people’s preferences: while, for
themselves, they tend to select the option with greater utility
(often, RF sensing), they prefer that their neighbors choose
the more privacy-preserving option (cameras). Therefore, for
most scenarios, it cannot be said that RF sensing is truly
preferred or really privacy-preserving, since these opinions
represent only one stakeholder’s perspective. This suggests
that while RF products may reduce concerns about visual data,
they introduce other unaddressed privacy considerations.

Key Finding 2: Users are unaware of the full capabilities
and risks of RF sensing. Thus, marketing radio-frequency
sensors as privacy-preserving can be misleading.

Recommendation: Researchers should provide nuanced
descriptions of the privacy implications of RF sensing. Com-
panies should provide clear information about RF sensing
capabilities and privacy implications in user manuals, product
packaging, and marketing materials. Regulatory guidelines
could ensure that claims are accurate.

8.3 Technical Privacy Protections are Needed

RF sensors can collect data through walls and infer a wide
range of human attributes and activities, often far beyond
what is needed in any particular use case. Accordingly, our
participants often expressed privacy concerns, especially in
relation to their neighbors. However, participants were signifi-
cantly more comfortable with RF sensors when deployed with
privacy protective measures. Unfortunately, while researchers
have been working on RF sensing technical defenses, com-
mercially available options appear non-existent. RF sensing
devices could perform data processing on the device and store
only relevant features and inferences (other types of sensor
systems have taken this “edge featurization” approach [9]).
More work is needed to design RF sensing systems that pro-
vide utility while minimizing data collection, ideally with
verifiable assurances.

Privacy protections built into devices can ease privacy con-
cerns; however, these do not address concerns about devices
people are unaware of. Research is needed on RF sensing pri-
vacy shields that people could practically deploy. An effective
approach could be to exploit the inherent technical limitations
of RF sensing, such as using the signal interference vulnera-
bility of RF sensing [57]. Similarly, the inability of RF waves
to penetrate certain materials could be leveraged to create a
simple blocker.

Key Finding 3: Technical measures can ease privacy con-
cerns while preserving utility. However, more work is needed
to develop comprehensive solutions and practical products.

Recommendation: Developers should integrate privacy-
enhancing technologies. This can include adopting edge com-
puting and featurization. Protections are especially crucial
when people are unaware; here, solutions could leverage RF
sensing’s technical limitations.

8.4 Novel Capabilities Require Legal Action

RF sensing introduces privacy challenges beyond technical
concerns, touching on sociological, legal, and ethical domains.
From a sociological perspective, the hard-to-detect nature of
RF sensing might enable widespread surveillance (e.g., by
governments) and thus exaggerate harms [46]. Moreover, un-
like cameras or microphones, RF sensing can penetrate walls
with minimal loss of fidelity, which, as we show, raises privacy
concerns in dense housing settings: participants were uneasy
about RF systems capturing sensitive information from neigh-
boring apartments without their knowledge. This concern
leads to key questions: how to inform users about RF sys-
tems? How to give them the ability to take action? Solutions
could potentially leverage IoT privacy labels [23, 24], inform-
ing consumers about data collected, processing, and privacy
measures. Labels could also outline the capabilities of RF
sensing, helping users understand the technology, a sore point
in our interviews. Encouragingly, regulatory frameworks have



already been proposed for IoT labels [18, 29], and simple
modifications could accommodate RF sensing products.

Legislation has a fundamental role in this ecosystem, too;
informed consent and opt-out options could be mandated
by law. This solution is not without its flaws: who bears re-
sponsibility for obtaining consent and providing controls?
The device operator? The manufacturer? Supervising govern-
ment agencies? Current privacy regulations, such as GDPR,
do not explicitly address non-visual surveillance technolo-
gies [26]. While GDPR’s general provisions for personal
data processing indirectly cover such technologies, unlike
traditional surveillance (e.g., CCTV requirements [25]), ad-
ditional guidance has not been issued for RF sensing. Given
the implications of widespread RF sensing adoption, such
questions require urgent attention. Finally, participants feared
RF sensing might inadvertently detect sensitive situations in
neighboring apartments, such as domestic violence or mental
health crises. With smart home data already being used in
forensic investigations [20, 36], it is unclear if owners are
responsible for reporting such information.

Key Finding 4: RF sensing introduces new privacy chal-
lenges due to its ability to sense through solid objects, poten-
tially capturing data from neighbors and making it difficult
for individuals to detect tracking.

Recommendation: A legal framework may be needed for
reasonable use of RF sensing, specifying when notifications,
informed consent, and controls are required. Similar to video
surveillance, RF sensing should be explicitly addressed within
existing legal frameworks.

9 Conclusion

We conducted interviews (N = 14) and a large-scale vignette
survey (N = 510), to understand people’s privacy perceptions
of RF sensing technology compared to cameras. We found
that, initially, most participants were unaware of the full ca-
pabilities of RF sensing. However, once they understood the
technology, they expressed nuanced concerns impacted by
contextual factors. People prefer RF sensors in intimate lo-
cations as they are more comfortable with RF sensors not
collecting visual information. Yet, in security-relevant sce-
narios and from the neighbor’s perspective, people preferred
cameras for the visual evidence and their inability to pene-
trate walls. We further found that protective measures can
improve comfort, but which protection people prefer is heav-
ily impacted by context. We conclude that users need to be
educated about RF sensing and call for new legal frameworks
to safeguard privacy as the technology proliferates.

10 Ethics Considerations

The Carnegie Mellon University Institutional Review Board
(IRB) reviewed and approved all study procedures and con-

sent processes. In designing them, we focused on minimizing
risks and ensuring participant autonomy and data protection.
The primary stakeholders in our research were the interview
and survey participants, as well as the broader public poten-
tially affected by the deployment of RF sensing technologies.
For participants, the main risks included discomfort or anxiety
when discussing privacy concerns, particularly regarding sen-
sitive use cases. However, all of our scenarios were hypotheti-
cal and we did not probe participants’ personal experiences.
We further ensured informed consent by clearly explaining
the study’s purpose, procedures, and potential risks and bene-
fits. We gave participants opportunities to ask questions and
allowed them to withdraw or pause their participation at any
time without consequences. We collected minimal personal
data, anonymized it, and securely stored it to prevent unau-
thorized access. A secondary stakeholder is the developers
of RF sensing technology. While we did not directly interact
with developers, we argue that the insights uncovered would
benefit their products as well as their users.

Although we did not directly develop or deploy RF sensing
artifacts, we acknowledge the broader societal implications.
RF sensing, often presented as a privacy-preserving alterna-
tive to cameras, raises significant ethical questions due to its
potential for misuse and unintended consequences. To address
this, we presented our findings in a neutral, evidence-based
manner to inform educational and legislative efforts.

11 Open Science

We provide the interview guideline, interview slideshow, inter-
view codebook, survey questionnaire, survey analysis script,
and anonymized survey data on OSF: https://doi.org/10.176
05/OSF.IO/6WAMZ.
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A Appendix

Name Description

Private Security Imagine you have an indoor security system installed in your home. It constantly surveils your entrance area to alert you in case of suspicious activity so that it
can trigger the alarm. You can also receive notifications on specific activities, such as kids arriving home from school, without triggering the alarm.

Private Health Imagine you have an older adult in your life who still lives independently in their home. You want to ensure their safety, so you install a health monitoring
system. Its main purpose is to send out an alert when it detects a person has fallen. Besides that, it can also recognize and alert in case of unusual breathing and
heart rate patterns.

Public Security Imagine you visit a stadium for a major event. The whole stadium is equipped with a security system to monitor the area to prevent crimes, such as theft or
violence. In addition, the system also monitors general crowd movements and densities to avoid overcrowding and to ensure compliance with capacity limits.

Public Analytics Imagine you visit a stadium for a major event. The stadium has a crowd monitoring system to inform event organizers about crowded food stands and
bathrooms, ensuring timely refilling and frequent cleaning. Moreover, the system provides analytical insights, such as which routes most people take to allow
the strategic placement of advertisements or merchandise booths, and insights into the general demographics of the crowd to allow conclusions about the types
of people attracted by certain events.

Table 4: The use-case scenarios we used in our interviews.

ID System Perspective Location Scenario

HOH Private Health Owner Hallway You have installed a health monitoring system for older adults in your household. This system collects health data,
provides alerts for unusual health patterns and emergencies such as falls. The system is placed in the hallway.

HOB Private Health Owner Bathroom You have installed a health monitoring system for older adults in your household. This system collects health data,
provides alerts for unusual health patterns and emergencies such as falls. The system is placed in the bathroom.

HNA Private Health Neighbor Anywhere Your neighbor has installed a health monitoring system for older adults in their household. This system collects
health data, provides alerts for unusual health patterns and emergencies such as falls.

HVH Private Health Visitor Hallway You are visiting a friend who has installed a health monitoring system for older adults in their household. This
system collects health data, provides alerts for unusual health patterns and emergencies such as falls. The system
is placed in the hallway.

PHVB Private Health Visitor Bathroom You are visiting a friend who has installed a health monitoring system for older adults in their household. This
system collects health data, provides alerts for unusual health patterns and emergencies such as falls. The system
is placed in the bathroom.

ROH Private Security Owner Hallway You have installed a security system in your household to prevent suspicious activity. This system provides
notifications of unusual events such as intrusions. The system is placed in the hallway.

ROF Private Security Owner Front Porch You have installed a security system in your household to prevent suspicious activity. This system provides
notifications of unusual events such as intrusions. The system is placed on the front porch.

ROB Private Security Owner Bathroom You have installed a security system in your household to prevent suspicious activity. This system provides
notifications of unusual events such as intrusions. The system is placed in the bathroom.

RNF Private Security Neighbor Front Porch Your neighbor has installed a security system in their household to prevent suspicious activity. This system
provides notifications of unusual events such as intrusions. The system is placed on the front porch.

RNH Private Security Neighbor Hallway Your neighbor has installed a security system in their household to prevent suspicious activity. This system provides
notifications of unusual events such as intrusions. The system is placed in the hallway inside their apartment.

RVH Private Security Visitor Hallway You are visiting a friend who has installed a security system in their household to prevent suspicious activity. This
system provides notifications of unusual events such as intrusions. The system is placed in the hallway.

RVF Private Security Visitor Front Porch You are visiting a friend who has installed a security system in their household to prevent suspicious activity. This
system provides notifications of unusual events such as intrusions. The system is placed on the front porch.

RVB Private Security Visitor Bathroom You are visiting a friend who has installed a security system in their household to prevent suspicious activity. This
system provides notifications of unusual events such as intrusions. The system is placed in the bathroom.

UVH Public Security Visitor Hallway You are visiting a stadium with a security system that prevents crimes, monitors crowds, and ensures safety. The
system is placed in hallway areas.

UVB Public Security Visitor Bathroom You are visiting a stadium with a security system that prevents crimes, monitors crowds, and ensures safety. The
system is placed in the bathrooms.

AVH Public Analytics Visitor Hallway You are visiting a stadium with an analytics system that monitors crowd flow, provides demographic insights, and
optimizes placement of resources. The system is placed in hallway areas.

AVB Public Analytics Visitor Bathroom You are visiting a stadium with an analytics system that monitors crowd flow, provides demographic insights, and
optimizes placement of resources. The system is placed in the bathrooms.

Table 5: The scenarios used in our online survey.
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